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1  Abstract 

 A multistatic ground penetrating radar system is described, capable of real-time 
imaging and object detection. The radar consists of 16 transmitter and receiver pairs mounted 
across the front of a vehicle. The transmitters operate sequentially with all receivers activated 
for each transmit pulse. The resulting frame of 256 multistatic time signals is processed into an 
image using a tomographic reconstruction technique. In this paper we describe the system 
architecture, signal conditioning, and reconstruction algorithm for producing a sequence of 
images in real time as the vehicle travels across the ground. We demonstrate a robust image 
post-processing method that separates the bright spot corresponding to the dominant buried 
object in an image frame from the background. This is essential before calculating an 
energy-based statistic for automatic detection of buried objects. This spot ratio detection 
statistic, based on energy both inside and outside the spot, is shown to be not only more 
stationary than spot energy (i.e. mostly free of localized trends due to changing ground 
conditions), but also more powerful as a detection statistic. Finally, we demonstrate that 
multistatic imaging significantly improves the detection performance over more conventional 
monostatic array processing. 

 

2  Introduction 

 Ground Penetrating Radar (GPR) systems are widely used for detecting buried objects 
such as landmines and utility pipes. Unlike metal detectors that use electromagnetic induction 
(EMI) loops, GPRs can detect not only buried metallic objects, but also buried non-metallic 
objects of sufficient dielectric contrast against soil. High frequency GPR systems that detect 
shallow buried objects such as landmines range from handheld single antenna systems, to 
multiple antenna arrays mounted on ground or aerial platforms [14, 15]. Vehicle mounted 
systems are particularly useful for rapidly surveying wide areas. In nearly all vehicle-mounted 
systems the transmitter and receiver arrays are designed to operate monostatically (or more 
precisely, multi-monostatically) [14], i.e. the transmitters and receivers are approximately 
co-located to form a sequence of monostatic pairs. When a given transmitter emits a pulse, 
only the corresponding receiver is activated. The monostatic pairs operate sequentially to 
create one frame of radar return signals each time the system completes one full cycle of 
transmitter activations. Each radar return signal measures backscattered energy from the 
ground and buried objects along the direction of a specific transmitter-receiver pair. In this 
sense, a frame of radar return signals measures backscattered energy from an object over a 
range of different look directions. 



The signals from monostatic real-time GPR systems are usually analyzed directly for 
evidence of buried object [45, 44, 10, 53, 47]. The signals are typically organized into signal 
scans, i.e., sequences of radar return signals acquired by specific transmitter-receiver pairs as 
the vehicle moves down-track. The input is one signal scan for each of N  monostatic 
transmitter-receiver pairs. Buried objects present hyperbolic arc-like signatures in signal scans 
due to the systematic change in range as the array approaches and recedes from a buried 
object. It is common practice to first detect anomalies in the return signals [45] and then apply 
more sophisticated algorithms that (1) determine if the anomalies are hyperbolic in nature [36, 
53, 42], or (2) use trained classifiers to distinguish buried objects of interest from false positives 
[43, 50, 38, 3, 4, 21, 28, 51, 22, 52, 19, 20, 18, 47, 40]. 

GPR arrays can also operate in multistatic mode. In this case, all receivers are activated 
when a transmitter emits a pulse. For each transmitted pulse, measurements of the scattered 
energy are obtained at multiple angles from the transmitter look direction. One frame from a 

multistatic array of N  transmitter-receiver pairs contains 2N  radar return signals, 
compared with the N  signals in a frame from a monostatic array with the same number of 
elements. Thus, multistatic GPR arrays collect much more information about the ground and 
subsurface in a single frame than monostatic arrays. However, this comes at the cost of greater 
system complexity and data processing requirements to extract useful information. 

In this paper we describe a novel field-tested multistatic GPR array system, the 
Multistatic Underground Imaging Radar (MUIR), capable of real-time imaging and object 
detection. Our approach is to reconstruct a sequence of GPR tomography images in real-time 
from the sequence of GPR signal frames acquired as the vehicle moves down-track, and then 

extract buried object detection statistics from those images. Each multistatic data frame of 2N  
signals is reduced to a single image in a vertical plane perpendicular to the vehicle track 
(cross-track direction). Successive image frames can be subsequently combined using a 
synthetic aperture approach to provide focusing in the down-track direction. The effect is to 
reduce both the cross-track and down-track hyperbolas associated with buried objects to bright 
spots in an image sequence. Bright spot detection is arguably easier than hyperbola detection, 
especially when the contrast against background is higher for bright spots than for hyperbolas. 
However, real-time multistatic GPR imaging does pose a computational challenge. Our MUIR 
system addresses this challenge by hosting fast imaging algorithms on a vehicle-mounted 
computer cluster. 

Multistatic array operation is common in tomographic imaging [26]. Indeed, most of the 
previous work in multistatic GPR is motivated by the problem of tomographic imaging or 
inversion ([24, 39, 2], among others) and typically involves theoretical studies using simulated 
data. Small systems have more recently been developed for investigating multistatic GPR in the 
laboratory [54, 11, 1, 9, 5]. Many of these systems were motivated by the success of 
time-reversal processing techniques for multistatic array data [12, 13, 46, 35, 34, 16, 17]. The 
authors are aware of only two examples of multistatic GPR systems tested in field conditions: a 
side-looking multistatic SAR system [31, 32] and a forward looking vehicle-mounted SAR system 
[27]. The system in [31, 32] contains one transmitter and one receiver whose separations are 
manually adjusted between scans to obtain multiple images from different configurations. The 
system in [27] uses a single transmit horn and single receive horn mounted on mechanical 



translation stages that move independently. Both systems employ wideband stepped frequency 
radars and were used primarily for research purposes. Neither was designed for rapid real-time 
operation. 

Though multistatic GPR arrays have in principle many potential advantages over 
multi-monostatic arrays, the main technical challenges are the additional system complexity 
and the computational cost of processing the frames of radar return signals in real-time. In this 
article we show how these challenges are met in our MUIR system, providing a capability of 
real-time multistatic imaging and object detection. In section 3 we provide a general 
description of the MUIR system and its general capabilities. In sections 4-7 we describe the 
major processing steps, namely GPR signal pre-processing, imaging, image post-processing, and 
calculation of a detection statistic for buried objects. Finally in section 8 we show performance 
results obtained from a recent trial at a test facility in the western United States. The overall 
conclusion is that multistatic GPR arrays are now a practical reality and show good object 
detection performance. However, we are only beginning to exploit the information potential of 
multistatic GPR data. We expect to see dramatic improvements in detection and classification 
performance as more sophisticated algorithms specifically designed for multistatic GPR data are 
developed and incorporated into our real-time processing system. 

 

3  System Description 

 Our impulse radar array contains =16N  transmitters and =16N  receivers. It uses 
32 “folded-hex” time domain horn antennas on two tracks of length 2 meters separated by 
roughly 10 cm and mounted to the front of a vehicle (Fig 1). The array is mounted on a 
mechanically adjustable pivot that allows the radar look direction to be adjusted from vertical 

(pointing straight into the ground) to an angle of 60  from vertical. In the tilt forward 
configuration, the imaging plane is a vertical plane in front of the array at the distance where 
the array boresight intersects the ground plane. The array boresight is defined as the line 
beginning midway between transmitter and receiver lines (pivot axis) and pointing in the 
direction of the antennas (Fig. 2). For our transmitters, the beam width as measured from the 

boresight axis to the 3dB point is 50 . The coordinate axes are defined as x  in the 
cross-track direction along the array (from the driver to the passenger side of the vehicle), y  

in the down-track direction, and z  vertically upward. 
The array system fires a 4 ns pulse from each transmitter in sequence, collecting return 

signals on each of the =16N  receivers for each transmit pulse. Each received signal is 512 
samples long with a 40 ps time interval between samples. Each signal thus has a duration of 

approximately 20 ns. The entire data frame of 2 = 256N  received signals is acquired in 4 ms. 
In addition to the GPR array, the system includes several GPS receivers for geolocating buried 
objects, a temperature sensor, and other sensors for system diagnostics, tracking, and control. 

As the vehicle moves down-track, a real-time processing system creates a vertical plane 
image in the cross-track direction (an image frame) and calculates a detection statistic for each 
such frame. The four processing steps are (i) GPR signal preprocessing, (ii) GPR imaging, (iii) GPR 
image post-processing, and (iv) buried object detection. These processing steps along with data 
acquisitions are divided between two processors: a Storage and Track Processing (STP) unit and 
a Real Time/Visualization (RTV) unit. The STP unit handles data acquisition and GPR signal 



preprocessing, control, and system monitoring. It also combines the GPS and other navigational 
data with the GPR data to allow precise geospatial location of buried objects. It consists of 24 
thread execution engines (dual hex core hyperthreaded processors) with 24 GB of RAM, a 256 
GB SSD OS disk, and dual 1.5 TB RAID 6 storage for archiving raw data. It passes the 
preprocessed signals to the RTV unit for imaging, image post-processing, buried object 
detection, and visualization. The RTV unit has a dual hex core CPU and NVIDIA Tesla GPU with 
two 256 GB SSD hard drives. Both units have an IPMI interface, 4 Gb network ports for 
communication, and are DC powered. The processing system is ruggedized for off-track 
real-time operation. Figure 3 shows a diagram of the computational system and communication 
requirements. The system has been tested at a desert facility in the southwestern United States 
and on a local test track at Lawrence Livermore National Laboratory. 

 

 

 
Figure  1:  Photo of 32 element multistatic array alone (top) and mounted on vehicle 

(bottom) in field configuration.  
 

  
 



 
     

Figure  2:  Array and imaging geometry for nominal height of 40 cm and forward look 

direction of 30 . Transmitters (red squares) and receivers (blue circles) are separated by 10 
cm. The vertical image plane (purple) intersects the ground plane (green) at a position in front 

of the array defined by the projection of the array axis in the boresight direction( 30 ). 
  
 

 
     

Figure  3:  Block diagram of our real-time multistatic GPR imaging and processing 
system for buried object detection.  

  

 

4  GPR Return Signal Preprocessing 

 In GPR antenna arrays that are mounted to a moving vehicle a prescribed distance 
above ground level, the return signals will typically be contaminated by undesired artifacts 
attributed to external interference, antenna coupling, ground bounce / multipath, and 



roughness in the surface. These background artifacts are unrelated to buried objects of interest 
and can make them much more difficult to detect. The goal of pre-processing is to remove or 
suppress background in GPR return signals so that buried objects will be easier to detect in the 
reconstructed tomography images. 

Fig. 4(a) shows a down-track scan of GPR return signals associated with a specific 
transmitter-receiver (TR) pair. A down-track scan is a sequence of GPR return signals for a 
specific TR pair as the vehicle moves down-track. The horizontal stripes near the top are due to 
antenna coupling, i.e. transmission directly between transmitter and receiver elements in the 
array. The varying bright stripe below the antenna coupling is due to ground bounce (reflection 
off an uneven surface). Echos of the surface due to multipath can be seen below the surface 
reflection. The hyperbola is produced by backscatter from a buried object. The signal associated 
with a single column in the scan from Fig. 4(a) is shown in Fig. 4(b), along with its spectrum in 
Fig. 4(c). A signal contaminated by interference is shown in Fig. 4(d). Note that for our system, 
most of the return energy lies in the range 1-3 GHz. A longer scan is shown in Fig. 5(a). 
     

 
 Figure  4:  (a) Down-track scan of GPR return signals. (b) Signal with no interference. 
(c) Amplitude spectrum of signal in (b). (d) Signal contaminated by interference. 

  



 
     

 Figure  5:  Down-track scans of GPR return signals. (a) Unprocessed. (b) With 
interference and antenna coupling pulse removed. (c) With ground bounce and multipath 

suppressed. 
  

Signal pre-processing for background removal usually involves background subtraction. 
The mean of previous return signals (a background estimate) is normally subtracted from the 
current signal [7]. The current signal is sometimes first adjusted for scale and shift relative to 
the mean signal [43, 6, 49]. However, other methods have been considered. For example, 
background removal was based on LMS in [45, 44], principal components in [10], Kalman filters 
in [8], and particle filters in [41]. Our approach is to perform background subtraction twice: first 
to remove antenna coupling, and then to suppress ground bounce / multipath. As discussed 
below, we perform a second subtraction because along rough roads, the separation between 
multipath artifacts in a GPR return signal varies with the air gap between the antenna and the 
surface of the ground. 

 

 



4.1  Interference Rejection 

 Signals from external sources operating in the vicinity of the GPR can additively 
interfere with return signals. As shown in Fig. 5(a), interference disrupts isolated columns of 
scan data. The usual culprits are GPS communication links, cell phones, and other locally 
operating communication systems. It is common practice to reject highly transient interference 
by applying a short duration median filter in the down-track direction to each sample on each 
row of the scan [36, 44, 6]. The median filters must be short so as to not also destroy 
hyperbolas associated with buried objects of interest. Although we are developing new 
methods for rejecting interference of any duration without destroying evidence of buried 
objects, we currently suppress transient interference by applying median filters that span only 
three adjacent columns in a scan. 

 

4.2  Coupling Pulse Removal 
 The coupling pulse between transmit and receive antennas is the return signal 

component due to the direct path of the transmitted signal to the receiver. Coupling pulses 
produce horizontal streaks in down-track scans, as they tend to be constant at predictable 
times associated with first and higher order reflections of transmitted signals off of antenna 
horns. 

One can reduce antenna coupling by (a) using low radar cross-section (RCS) antennas, 
(b) packing the antennas in radar absorbing material (RAM), or (c) subtracting a predicted 
return signal from each return signal. For a given TR pair, we form a predicted signal as a 

weighted mean rk  of return signals prior to the current return signal rk : 

1= (1 )r r rk k k    with = 0.05  and 0 0=r r . Fig. 5(b) shows an example of interference 

rejection and coupling pulse removal. 
 

4.3  Ground Bounce and Multi-Path Removal 
 Ground bounce is the portion of the return signal that reflects (bounces) off the surface 

of the ground. Ground bounce produces a bright curve in the down-track scan that tracks the 
shape of the surface. In GPR antenna arrays with high RCS, there will also be multiple 
reflections. Multipath is the portion of the return signal due to multiple reflections in the air 
gap between the array and the ground surface. The effect of multipath on down-track scans is 
to replicate faint versions of the surface track in the sub-surface (see Fig. 5(a)). 

Once interference and antenna coupling have been removed, surface tracking is used to 
determine the air gap between the antenna array and the surface, and the extent of the air gap 
is used to suppress ground bounce and multipath. The air gap varies from zero to 1.5h , where 
h  is nominal height of the antenna array above ground level. In the absence of a buried object, 
the largest positive peak in the signal (with interference and antenna coupling removed) occurs 
at the surface. Various constraints are applied to ensure that the surface is properly tracked. 

Within a scan, the surface is tracked within a time interval t  (a vertical range in Fig. 5(b)) 

equal to one cycle of the center frequency of the radar. The start of the interval is the point at 
which the signal amplitude significantly exceeds the noise level. The surface location for a given 

column in the scan is chosen as the closest peak in signal value within t  of the surface 



location for the previous column. 
For fixed soil permittivity, the separation between multipath artifacts in a GPR return 

signal varies with the air gap. Conversely, the separation between multipath artifacts will be 
constant for all signals associated with a specific air gap. For a specific TR pair, consider the 

sequence of return signals { }rk  associated with a specific air gap (these are columns of a 

down-track signal scan that all share the same air gap within a tolerance of a fraction of 1 cm). 

Assume that interference and antenna coupling have been removed from rk . rk  can be 

modeled as  

 =r s bk k k  (1) 

 where sk  free of ground bounce and multipath, and bk  is the background component that 

takes everything other than buried objects into account. We estimate sk  as  

 ˆs r bk k k   (2) 
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 We are currently investigating ways of extending this approach to minimize the effect of 
anomalous return signals on the background estimate. Fig. 5(c) shows an example of ground 
bounce and multipath suppression for the down-track scan associated with a particular TR pair 
(as each such pair is processed separately). 

 

4.4  Surface Flattening 

 Surface roughness tends to increase the buried object false positive rate. When the 
surface is rough, anomalies in radar returns caused by unusually high levels of backscatter from 
the surface become much more probable. Ground bounce removal might mitigate this effect to 
some degree. Surface roughness also makes image background estimation more difficult by 
contributing to air pockets in reconstructed GPR images. We address this problem by flattening 
the surface prior to GPR image reconstruction. Flattening is accomplished by shifting the 
columns in the down-track scan for each TR pair such that for every column, the first row of the 
scan always lies at the surface. 

 

5  GPR Image Reconstruction 

 After preprocessing, each acquired data frame contains a set of time traces or GPR 

return signals { ( ) : =1, ,16; =1, ,16}mnR t m n , where ( )mnR t  is the time trace from receiver 

n obtained when the transmitter m emitted a pulse, and our array contains =16N  

transmitter-receiver pairs. Each data frame thus contains 2 = 256N  time traces. A real 
aperture radar (RAR) image frame is reconstructed in the xz plane (a vertical plane in the 
cross-track direction). The radar return signals for each RAR image frame are received through a 
real aperture (the array of receiver antennas that travels with the vehicle). As mentioned in 

section 3, one fully multistatic frame of 2N  signals is acquired every 4 ms, during which the 
array travels less than 1 cm at typical operation speeds ( 8  km/hr). By tilting the array 
forward, the ground reflection and associated multi-path is reduced, and objects can be 



detected ahead of the array position. In particular, if the antenna array is at location 
jy  

down-track, then the image plane occurs at = tan( )I

j jy y h  , where h  is antenna height 

above the ground plane, and   is the forward tilt of the antenna array from vertical. The array 

pivots around an axis midway between sequences of transmitters and receivers. When the 
array is tilted forward, transmitter height decreases and receiver height increases from the 
nominal array height. The separation between transmitter and receiver in the downtrack (y) 
direction is also reduced. The vertical xz image plane contains the intersection of the horizontal 
ground plane and the tilted plane that contains the boresight axes of the transmitters (Fig. 2). It 
approximates the region of maximum overlap between the beam patterns of the transmitter 
and receiver antennas in the ground (Fig. 6). These patterns are oriented closer to the vertical 
in the ground due to refraction at the ground-air interface. 

 

 
 

Figure  6:  Imaging geometry and beam patterns for an array of nominal height of 40 

cm and look direction of 30 . Shown are the positions of the ground (solid line) and image 
plane (vertical dashed line) superposed on the product of the transmitter and receiver beam 

patterns ( cos  for each) for soil with refractive index of three. 
  

Our imaging algorithm is based on the reverse-time migration algorithm in [30]. It uses 

the temporal Fourier transform ˆ ( ) = { ( )}mn t mnR R t  of the time traces and the Fourier 

transform of the transmitted pulses ˆ ( ) = { ( )}m t mT T t  to calculate the (scalar) 

backpropagated fields ( , , ; )bp

m x y z   over all time traces received from each transmitter m, 

and the transmitted field ( , , ; )T

mE x y z   for each transmitter m. A key result from [30] is that 



the RAR image ( , )RAR

jI x z  can be obtained by summing the product of these fields in the 

image plane = I

jy y  over all transmitters and receivers, and then integrating over the angular 

frequency pass-band ( 1 2< <   ) of the radar. Mathematically,  

 2

1 =1

( , ) = ( , , ; ) ( , , ; ) ,
N

RAR bp I T I

j m j m j

m

I x z x y z E x y z d



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 
 
 
  (4) 

 where the backpropagated field ( , , ; )bp I

m jx y z   is obtained as the sum of backpropagated 

fields ( , , ; )bp I

mn jE x y z   from each receiver signal associated with pulses from transmitter m :  

 
=1

( , , ; ) = ( , , ; ).
N

bp I bp I
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x y z E x y z    (5) 

 Since the field bp

mnE  and T

mE  are complex, the resulting RAR image is complex. 

The advantage of the formulation (4)-(5) is that we can use plane-to-plane (P2P) 
backpropagation [25, 33, 29] to calculate the fields. The P2P method calculates the fields 
starting from an initial plane. In real-time implementations, P2P uses the fast Fourier transform 
(FFT) to efficiently compute the fields so that (4)-(5) can then be directly applied to RAR image 
reconstruction. Since the image plane can be in front of the array, we employ a full 3D (xyz) P2P 
formalism. This begins with an effective source distribution derived from the received signals 

( )mnR  :  

 *

=1

( , , ; ) = ( ) ( ) ( ) ( ) ,
N
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m mn n R R

n

s x y z R x x y y z z        (6) 

 where the coordinates of receiver n are ( , , )n R Rx y z , and the complex conjugate of ( )mnR   

is used for backpropagation. The spatial Fourier transform of ( , , ; )bp

ms x y z   in the xy plane is  
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 This produces the spatial transformed field at the ground surface,  

 *

2
=1

1
( , , = 0; ) = ( ) ,
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 where 2 2 2=z x yk k k k  . The ranges of xk  and yk  are restricted to the circular region 

where zk  is real (no evanescent fields). The field in the ground ( < 0z ) is obtained from (8) as  

 ( , , ; ) = ( , , = 0; )
ik zbp bp z

m x y m x yk k z k k z e   


  (9) 

 with 2 2 2 2=z g x yk n k k k   , which incorporates the refractive index of the ground material gn

. The field bp

m  in (4) is then computed as 1( , , ; ) = { ( , , ; )}bp bp

m xy m x yx y z k k z    , where 1

xy

  

is the inverse spatial Fourier transform. The transmit field T

mE  in (4) is calculated in a similar 

way using forward propagation from the source function.  



 ˆ( , , ; ) = ( ) ( ) ( ) ( )T

m m T Ts x y z T x x y y z z        (10) 

 where ( )T t  is assumed to be an impulse ( ˆ( )T   constant. 

The RAR imaging formula (4), sums the contributions from all transmitters (
=1,2, ,m N ) at each ( , )x z  pixel location. However, the antenna patterns of the horns limit 

the sensitivity of receivers far from a given transmitter to reflections from buried objects, which 
effectively reduces the order of the multistatic data to less than =16N  receivers per 
transmitter. Only receivers whose antenna patterns overlap with the antenna pattern for a 
given transmitter can contribute significantly to the imaging of a buried object. The other 
receivers contribute mostly to the background, thereby reducing object contrast against 
background. To correct for this, we apply windowing functions to both the receiver source 
function in (6), and RAR imaging formula (4). For convenience, we use rectangular 
unit-amplitude windowing functions. The windowed version of the source function in (6) is  

 *

=1

( , , ; ) = ( ) ( ) ( ) ( ) ( ) ,
N

bp R

m mn n R R

n

s x y z w n m R x x y y z z         (11) 

 where ( )Rw n m  is unity for | | Rn m N  , and zero otherwise. The number RN  is the 

multistatic degree. For imaging, the active transmitter-receiver pairs are limited to the RN  

receivers on the immediate left and right of each transmitter. The windowed version of RAR 
imaging formula (4) is  

 2

1 =1

( , ) = ( ) ( , , ; ) ( , , ; ) ,
N

RAR T bp I T I
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 where ( )T

mw x x  is unity for | |m Tx x N x   , and zero otherwise. The quantity x  is the 

spacing between successive antenna pairs along the array. The aperture weighting function Tw  
limits the transmitters m that can contribute to the value of a pixel on column x of the image to 

those that satisfy the inequality | |m Tx x N x   . 

Each RAR image frame is reconstructed from a single frame of GPR return signals and is 
thus focused only in the cross-track direction. However, a buried object may appear as a bright 
spot in a RAR image even if the image plane does not actually contain the object. In a sequence 
of reconstructed RAR image frames, this bright spot will continue to rise (decrease in apparent 
depth) until the antenna array moves beyond the buried object. Since the apparent depth of 
the bright spot can be calculated from the soil refractive index, array geometry, and buried 
object location, we can combine the current RAR image frame with previous frames to produce 
synthetic aperture radar (SAR) image frames that are focused not only in the cross-track 
direction, but also in the down-track direction. The synthetic aperture is realized as a sequence 

of real apertures traced out through space along the vehicle track from the current location jy  

of the vehicle backward to vehicle location 1jy   and forward to vehicle location 2jy  . 

SAR image frames can be reconstructed from sequences of RAR image frames using the 
synthetic aperture integration formula  

  
2

=
1

( , ) = , ( , ) .

j

SAR RAR

j k k j g

k j

I x z I x z z n







  (13) 

 Synthetic aperture integration is thus efficient, with complexity that varies linearly with the 



number of pixels in an image frame. The quantity ( , )k j gz z n
 is the apparent depth in image 

kI  of an object at depth z  in the image plane at I

jy . It is calculated by solving the equation  

 delay ( , ) to ( , ) = delay ( , ) to ( , ( , )) ,I I

k j k k k j gy h y z y h y z z n
        (14) 

 where delay (A to B) is the time delay of the radar wave in traveling from point A to point B 

(through air and then through soil). In practice, 2 = 0  and 1  is computed from the extent 

measured from the boresight intersection with the ground plane backward to where the trailing 
3 dB edge of the antenna beam intersects the ground plane. For antenna beam width  , 

height h , and tilt <  , we thus have 1 = [tan( ) tan( )]h      , which evaluates to 

1 28cm   for ( , , ) = (50 ,30 cm,20 )h  . Fig. 7 shows SAR image reconstructions 

(magnitudes of complex-valued pixels) with = = 6T RN N  and = 3gn  for vertical down-track, 

vertical cross-track, and horizontal down-track slices that contain the buried object 
corresponding to the hyperbola shown in the signal scan of Fig. 5. The multistatic degree was 
selected by maximizing the ratio of spot intensity to local background level. 

In the current system the complex images ( RAR

jI  or SAR

jI ) are archived for later analysis 

while the magnitudes of the images ( | |RAR

jI  or | |SAR

jI ) are passed on to the GPR image 

post-processing step. 
     
 
 



 
Figure  7:  Multistatic SAR image reconstruction showing vertical down-track, vertical 

cross-track, and horizontal down-track slices that contained the buried object corresponding to 
the hyperbola in the signal scan of Fig. 5. 

  

 

6  Foreground-Background Separation in GPR Images 

 GPR images reconstructed from pre-processed GPR return signals still tend to have 
significant residual energy at the surface and in the subsurface. GPR image post-processing 
suppresses residual energy not attributable to buried objects, and it is critical to the goal of 
separating buried objects in the foreground from soil and clutter in the background. 

Fig. 8 illustrates image post-processing (foreground-background separation) on an 
image frame (a vertical plane image in the cross-track direction) that contains a buried metallic 
object. The reconstructed image frame on the top contains significant residual energy, much of 
which is either highly correlated or highly transient in the down-track direction. Recall that 
pixels in reconstructed GPR image frames are magnitudes of complex numbers, and are thus 
have real non-negative values. The various stages of foreground-background separation 
(background subtraction, image filtering, and spot restoration) are described below. The image 
post-processing parameters are set by default but can be over-ridden by the user, and specific 
steps can even be skipped altogether. 

 



     
Figure  8:  GPR image frames of a buried metallic object at various stages of 

foreground-background separation. 
  

 

6.1  Background Subtraction 

 Our system can apply background subtraction (a) along the y (down-track) direction to 
individual pixels in reconstructed image frames, and then (b) along the x (cross-track) direction 
to individual rows in the resulting image frames, and then (c) to all pixels simultaneously in the 
resulting image frames. Note that most of the background energy has been removed from the 
background subtracted image in Fig. 8 (second from the top). 

In video frame sequences, it is common practice to separate stationary background 
from movement in the foreground by subtracting from each pixel, the mean of corresponding 
pixels from previous frames [37, 48]. For GPR, this amounts to subtraction along y. Subtraction 
along y suppresses residual energy that is highly correlated down-track, and it makes sense 
when the buried objects have limited extent in y. Pixels in reconstructed image frames are 
non-negative since we pass only the magnitude of the complex images to the post-processing 

function. The mean of pixels (x,z) over previous reconstructed image frames 
0

, ,k n k ny y   is 

subtracted from pixel (x,z) in reconstructed image frame ky . Large positive differences suggest 

an anomaly in frame ky . Negative differences are treated as differences of zero. The 



guard-band separation between image frames ky  and 
0

k ny   should be close to the extent of 

a buried object, while the along-track separation between frames ky  and k ny   should be 

perhaps an order of magnitude greater. 
Background subtraction in the x (cross-track) direction suppresses pixels whose energies 

are statistically insignificant relative to other pixels in the same image frame along the same 
row. Subtraction along x makes sense when one expects the buried objects to be considerably 
shorter than the antenna array. ( ) ( )z n z   is subtracted from each pixel on row z  of the 

image frame, where ( )z  and 2 ( )z  are the mean and variance of nonzero pixels on row 

z , and =1n  by default. Negative differences are treated as differences of zero. Subtraction 
along x compensates for depth in the sense that larger values tend to be subtracted from rows 
near the surface (where return energies tend to be greater) than from deeper rows. 

Next, k  and 2

k  are recursively updated as the running mean and variance over all 

nonzero pixels in image frames 0 ky y  after background subtraction along y  and then x . 

Pixels in frame ky  with statistically insignificant energies are suppressed by subtracting 

k kn   from frame ky  and treating negative differences as differences of zero ( =1n  by 

default). 
 

6.2  Image Filtering 

 Image filtering (a) isolates discrete buried objects in the foreground from soil and 
clutter in the background, and (b) suppresses residual energy that is highly transient down-track 
(speckle). The former goal is addressed with segmentation filters, and the latter goal is 
addressed with a spatially assisted median filter along y  (down-track) followed by a thickness 

filter along z  (depth). The process flow for image filtering is (i) segmentation filter 1, (ii) 
spatially assisted median filter along y , (iii) thickness filter along z , and (iv) segmentation 

filter 2. The third image from the top in Fig. 8 is filtered. In this example, the filtered output is 
the dominant region of highest energy (foreground spot) attributed to a buried metallic object. 
In an image frame that is free of buried objects, the filtered image will typically contain either a 
weak foreground spot or none at all. 

The segmentation filter segments the image frame into regions of non-zero pixels using 
a region growing algorithm with a small prescribed search neighborhood. All pixels outside of 
the dominant region of highest energy (the spot) are set to zero. In this case, the segmentation 
filter acts as a spot filter by removing everything outside of the spot from the image. The idea 
of removing all but the spot is based on the simplifying assumption that for buried object 
detection, image frames will typically contain at most one buried object. 

In sequences of GPR image frames, speckle refers to the transient spikes of energy that 
frequently appear and then quickly disappear as one moves through the sequence. As a spatial 
high pass filter, background subtraction tends to amplify the speckle inherent in radar images. 
Radar images are traditionally despeckled with median filters. In our case, once a segmentation 

filter has been applied to image frame ku  at ky , a median filter is applied separately in the 

y  direction to all nonzero pixels in k mu   to produce filtered image frame k mv  . The median 

filter has a short extent of 2 1m  frames down-track. It looks both behind and ahead by m  



frames, and can remove speckle that persists for as many as m  frames down-track. When 
applied on a per-pixel basis, median filters can easily suppress too much energy. The spatially 
assisted y  median filter (Algorithm 1) prevents this by allowing pixels to be filtered only when 

all pixels within connected groups of nearby pixels persist for less than the duration of the 
median filter. 

Energy spots that are thin in the depth ( z ) direction are typically not consistent with 

buried objects. Spots of thickness less than a prescribed small number zn  of image rows are 

suppressed by applying a thickness filter along z  separately to each column of the image. 

When applied to column x , the z  filter sets ( , )k mu x z  to zero if the number of zero pixels 

in the segment of column x  for image rows in the range [ , ]z zz n z n   is greater than zn . 

The final spot is then extracted from the z -filtered image by applying a second segmentation 
filter. 

 

   

 Algorithm 1: Spatially Assisted y  Median Filter  

  

 = 2( , ) = median{ ( , )}k
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6.3  Spot Restoration 

 The values of pixels in spots extracted from image frames by the second segmentation 
filter are typically attenuated relative to the values that they had immediately after subtraction 
along y . The probability of detecting buried objects can be improved by using the spot 

restoration algorithm (Algorithm 2) (a) to expand the spot with additional pixels as appropriate, 
and (b) to restore attenuated spot pixel values to the un-attenuated values that they had after 
subtraction along y . The last image in Fig. 8 contains a restored spot. Notice that the restored 

spot is larger and brighter than the filtered spot. 

If ku  is the image after subtraction along y  that corresponds to filtered image kv , 

the restored spot is grown in ku  from locations of pixels in the filtered spot (spot( kv )). For 

region growing, the seed pixel is the first pixel in spot( kv ) and the search neighborhood is 

typically the same as for the segmentation filter. The region growing threshold *u  is 

computed as a prescribed percentile ( = 25%  by default) of ku  values at locations of pixels 



in spot( kv ). Details are provided in Algorithm 2. 

 

   

 Algorithm 2: Spot Restoration  

  

 1. Compute segmentation threshold for spot expansion: 

 *

( , ) ( )

= percentile ( , )k
x z spot v

k

u u x z


  

 2. Expand the spot:  

 k kv u   

 *( , ) =1 ( , ) ( )k kv x z u x z spot v    

 ( , ) = first element of spot( )seed seed kx z v  

 *spot( ) = regionGrow( ,( , ), ,neighborhood)k k seed seedv v x z u  

 3. Restore the spot pixels:  
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7  The Weighted Spot Ratio Detection Statistic 

 In some GPR applications, the final output product is a 3D image of the subsurface that 
is inspected off-line for buried objects by a human operator. Other GPR applications (such as 
demining) require buried object detection in real-time. In real-time image-based detection, a 
buried object detection statistic must be computed in real-time for each GPR image frame. In 
this section, we propose an energy-based statistic for buried object detection in GPR image 
frames that is relatively insensitive to roughness in the road. 

When searching for buried objects, it is common practice to apply classifiers to small 
portions of GPR data that have been pre-screened by detectors [45]. These detectors typically 
require no training. They use efficient algorithms to search for anomalies in GPR data that are 
consistent with objects. The classifiers however, must normally be trained. More complex 
algorithms are used to discriminate specific objects either from false positives or from other 
objects by type. 

Buried objects can be found by analyzing either GPR return signals (as in most of the 
literature) or tomography images reconstructed from GPR return signals. Classifiers for GPR 
return signals have been studied extensively [50, 38, 3, 4, 21, 28, 51, 43, 22, 52, 53, 42, 36, 19, 
20, 18, 47, 40]. Neural network classifiers have been applied to scattering parameter features 
[50, 38, 3], bispectrum features [4], and geometry features of principal component depth 
planes, where objective functions for mean-squared error and area under the ROC curve are 
used [21, 28]. Support and relevance vector machines (SVMs and RVMs) have been applied 
directly to the return signal [51] and to texture features derived from 3D arrays of return signal 
samples [43]. Hidden Markov Models (HMMs) based on edges in scans (sequences of return 



signals along the track) have been constructed for hyperbola matching [22, 52], as hyperbolic 
arcs in scan data are characteristic of buried objects. Hyperbolas have also been matched by 
applying polynomial fits [53], Hough transforms (for both hyperbolas and piecewise linear 
approximations) [42], and genetic algorithms [36] to sequences of return signals along the 
track. Fuzzy K-means classifiers have been applied to feature vectors based on principal 
components (PCs) of return signals [19], edge strength features derived from sequences of 
return signals along the track [20], and edge histogram descriptors or EHDs (motivated by 
MPEG-7) that capture distributions of edge orientation in both xy  and yz  planes [18]. 

Matched filters have been applied to spectra of individual return signals [47]. Singular values 
and singular vectors of the Wigner time-frequency transform of individual return signals were 
proposed as feature vectors in [40]. 

Classifiers for GPR tomography images have been studied far less extensively. One 
approach uses time frequency transforms for columns of GPR tomography images that cut 
through suspected objects for classification [23]. 

Detectors, on the other hand, are typically energy-based [45, 44, 10, 41], and are usually 
applied to GPR return signals only after background has been removed. We propose a detection 
statistic for GPR image frames that is also energy-based. Perhaps the most obvious detection 

statistic is the spot energy 0ke   of the restored spot in the image frame at ky . Recall that 

values of pixels in the restored spot are drawn from the image frame at ky  immediately after 

background subtraction in the y  direction. Fig. 9 shows various time series of detection 

statistic values (or time series for short) generated from a sequence of multistatic SAR image 
frames reconstructed along a 297 meter rough off-road track in a desert region of the 
southwest United States. The antenna array was mounted 30 cm above ground level at a 

forward tilt of 20  from vertical, and the vehicle was moving at 8 km/hr. The diamond 
markers show locations of buried emplacements (both metallic and non-metallic). Fig. 9(a) 

shows the spot energy time series { }ke  generated from a sequence of reconstructed image 

frames that were not post-processed. Fig. 9(b) shows { }ke  generated from the corresponding 

sequence of post-processed image frames. The time series { }ke  is highly nonstationary (it has 

local trends). In particular, as the track becomes more rough, the likelihood of anomalous 

backscatter from the surface increases, along with ke . So as the track becomes more rough, 

the time series { }ke  trends upward and the rate of false positives tends to increase. In Fig. 

9(a-b), one can see that the ratio of spot energy at emplacement locations to spot energy 
elsewhere is much greater when the images are post-processed. It is clear from these two time 
series that foreground-background separation is essential for energy-based buried object 
detection in GPR tomography images. Nevertheless, even when generated from post-processed 

image frames, { }ke  can still be highly nonstationary. 

In classical time series analysis, a nonstationary time series is often detrended by 
subtracting a moving average from each time series sample. However, in many applications 
detection of buried objects is inherently causal, i.e. each buried object must be detected before 
the vehicle passes over it. This means that for our problem, the moving window must trail the 
current location of the vehicle down-track and the moving window that applies to a specific 



detection time series sample must trail that sample. Unfortunately, trailing window moving 
averages react slowly to sudden changes in track conditions (such as surface roughness, soil 
type, moisture content, etc.), and this can lead to false positives in the detrended time series 
near locations of sudden change. 

 

     
 Figure  9:  Detection time series of (a) spot energy without image post-processing, 

and (b-d) spot energy, spot ratio, and weighted spot ratio with image post-processing along a 
297 m rough off-road track. Buried objects are annotated with diamond markers. The diamond 

markers are circled for buried objects that are non-metallic . 
  

Rather than attempting to detrend a time series based on a detection statistic that is 
inherently nonstationary, we propose a more stationary detection statistic. Spot energy can be 

mostly detrended by dividing the energy inside the spot (the spot energy ke ) by a stable 

estimate of the level of energy outside the spot (the level of frame clutter kc ) to form the 

finite non-negative spot ratio  
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 (15) 

 In (15), kc  is computed as the median of pixels in reconstructed image frame k . The time 

series { }kc  will be highly correlated with the time series in Fig. 9(a) because the spot extracted 



from a reconstructed image (such as the top image in Fig. 8) will typically contain most of the 
frame pixels, and frame medians tend to be highly correlated with frame energies. As 

illustrated in Fig. 9(c), the spot ratio detection series { }kr  is quite stationary and mostly free of 

local trends associated with changes in track conditions such as roughness in the surface. 

Noise in { }kr  can be a nuisance to operators of the system. If the operator chooses to 

monitor { }kr  in real time as the vehicle proceeds down-track, noise in the time series makes it 

more difficult to mentally distinguish detections from background anomalies. If the operator 
instead chooses to monitor the associated sequence of post-processed tomography image 

frames in real-time, the amount of visible image clutter increases with noise in { }kr , making it 

more difficult to mentally distinguish detections from background anomalies in the images. 

Noise in { }kr  can be suppressed by computing the product of kr  and the spot ratio weighting 

function ( )kw r  to produce the weighted spot ratio  

 ( )k k kr w r r  (16) 

 We propose a piecewise linear weighting function of the form  
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 for 0 L Hw w   and 0 <L HR R . ( )kw r  becomes a penalty function when 

0 < 1L Hw w  . We suppress noise in { }kr  by using the weighting function parameters  

 ( , ) = (0.01,1),L Hw w  

 ( , ) = ( , ),L H L r H rR R n n   (18) 

 ( , ) = (1,10)L Hn n  

 where r  is computed as the median of spot ratio values over the first =100K  image 

frames for which > 0kr . 

Fig. 9(d) shows the weighted spot ratio time series { }kr  that corresponds to the spot 

ratio time series { }kr  in Fig. 9(c). One would not expect the detection-false alarm rate 

performance of kr  to be much different than for kr  because kr  is a monotonically 

non-decreasing function of kr . However, visualization displays based on { }kr  are less noisy 

and potentially more useful to system operators. 
 

8  System Performance Characterization 

 The performance of a GPR-based system for detecting buried objects is normally 
characterized with ROC curves. For GPR, it is customary to plot detection probability vs. the 
number of false positives per square meter. The number of false positives per square meter is 
estimated as the number of false positives divided by the product of vehicle travel distance 
down-track and the cross-track extent of the antenna array. Detection probability is estimated 
as the number of emplacements that were detected divided by the number that should have 



been detected. An emplacement should have been detected only if the antenna array was 
driven over it. An emplacement is thus counted only if its distance to the vehicle track is less 
than half the cross-track extent of the antenna array. 

ROC curve estimates require a vehicle track along a sequence of emplacements. The 
vehicle track is the GPS location of the antenna array midpoint proceeding down-track. 
Emplacement locations are surveyed prior to performance evaluation. The location of a buried 
object in a reconstructed image frame is estimated from the pixel location of the spot centroid, 
the GPS locations of the antenna array endpoints for that frame, and frame geometry. Frame 
geometry includes pixel width and height, height above ground level for the first row of pixels, 
and distance from the array start point to the first column of pixels. 

ROC curve estimates also require a series of detection statistic values. Detections within 
a prescribed tolerance   of emplacement locations are considered valid. False positives are 
disallowed within   meters down-track of detections or other false positives. A ROC curve is 
thus most easily estimated from a time series that has first been peak filtered so as to ensure a 
down-track separation of at least   between nonzero peaks.   accounts for (1) uncertainty 
in GPS estimates of vehicle location down-track relative to surveyed locations of emplacements, 
and (2) uncertainty in object locations introduced by radars that sense objects over extended 
intervals of vehicle location down-track. 

Strengths of emplacements relative to background provide a second very different 
measure of system performance. Unlike ROC curves, relative strengths are estimated from 
unfiltered time series. The relative strength of an emplacement is the value of its detection 
statistic divided by the background level. The background level is the mean of detection statistic 
values over all nonzero series samples that are separated down-track from every emplacement 
by more than  . The relative strength overall is the mean over all emplacements of relative 
strengths. 

 

8.1  Spot Energy vs. Weighted Spot Ratio 

 Fig.10(a) shows ROC curves for the rough off-road track of Fig.9 with = 0.5m . The 

ROC curve for { }ke  improves when the image frames are first post-processed. The ROC curve 

for { }kr  is better than for { }ke  because nonstationarity due to roughness in the track has 

been mostly removed. Using { }kr , a detection probability of 10 /12 > 0.83  was achieved with 

no false positives. The emplacement corresponding to diamond marker five was not detected. 
It is important to realize that although the false positives that compete with the weaker 
detection at diamond marker seven were not emplaced for this exercise, some may correspond 
to pre-existing buried objects. 

 

 



     
Figure  10:  ROC curves for detection time series of spot energy without image 

post-processing, spot energy with image post-processing and weighted spot ratio with image 
post-processing along (a) the 297 m rough off-road track from Fig. 9, and (b) a 244 m track over 

flat rocky soil. 
  

Fig.10(b) shows ROC curves for a 244 m track over flat rocky soil in the vicinity of the 
previous rough track (Fig. 9) with =1.5m  (as uncertainty in emplacement locations was 
greater on this run). These ROC curves were based on locations of emplacements and 
previously buried objects (both metallic and non-metallic). The antenna array was mounted 30 

cm above ground level at a forward tilt of 20  from vertical, and the vehicle was moving at 

8km/hr. Once again, the ROC curve for { }ke  improves when the image frames are first 

post-processed. However this time, it improves less because ke  is corrupted less by roughness 

in the track. Also, when the images are first post-processed, the ROC curve for kr  is now 

comparable to the ROC curve for { }ke  because { }ke  is fairly stationary to begin with. A 

detection probability of 16 /19 > 0.84  was achieved with no false positives using { }kr , and a 



detection probability of 17 /19 > 0.89  was achieved with one false positive. 
 

8.2  Monostatic vs. Multistatic Imaging through Real vs. Synthetic 
Apertures 

 We now provide an example in which system performance is characterized as a 
function of how the tomography images were reconstructed. Images of the subsurface along a 
293m rough off-road track near the previous tracks were generated in both monostatic and 
multistatic mode through real and synthetic apertures to produce both real-aperture radar 
(RAR) and synthetic aperture radar (SAR) images. This time, the antenna array was mounted 30 

cm above ground level at a forward tilt of 30  from vertical, and the vehicle was moving at 8 
km/hr. The multistatic degree was 6  receivers for each transmitter and the aperture 
weighting function for coherent imaging was nonzero over 6  adjacent transmitters. For this 
run, the down-track extent of the synthetic aperture was computed to extend approximately 28 
cm backward from the intersection of the boresight axis of the radar with the ground plane. 

 

     



 
Figure  11:  (a) ROC curves, and (b) bar charts of buried object relative detection 

strengths for detection time series of weighted spot ratios derived from sequences of 
monostatic and multistatic RAR and SAR image frames along a 297 m rough off-road track. 

  

Fig.11(a) shows ROC curves for { }kr  with = 0.5  m. Synthetic aperture imaging led 

to improved performance in both monostatic and multistatic modes. Multistatic mode led to 
improved performance in subsurface imaging through both real and synthetic apertures. The 
best overall performance was achieved by multistatic imaging through a synthetic aperture. In 
that case, a detection probability of 11/12 > 0.91 was achieved with no false positives. The 
remaining object was not detected. 

Fig.11(b) shows bar charts based on { }kr  for relative strengths of buried object 

detections based on spot ratio. Overall and for most individual buried objects (a) monostatic 
SAR was stronger than monostatic RAR, (b) multistatic SAR was stronger than multistatic RAR, 



(c) multistatic RAR was stronger than monostatic RAR, and (d) multistatic SAR was stronger than 
monostatic SAR. The best overall performance was again achieved by multistatic imaging 
through a synthetic aperture. 

 

9  Summary 

 We have presented an overview of our real-time multistatic underground imaging 
radar (MUIR) system and shown its performance over tracks with buried emplacements. The 

system consists of =16N  transmitter/receiver pairs that collect 2 = 256N  time signals in 
each data frame, as opposed to only =16N  time signals in each frame for typical monostatic 
GPR array systems. A sophisticated real-time processing system based on reverse-time 
migration combined with plane-to-plane backpropagation reduces the data frame to an image 
of the subsurface in a vertical plane in front of the tilted array. A robust method for separating 
bright spots associated with buried objects from background variation is applied to the image 
and a weighted spot energy ratio statistic is calculated to detect the presence of buried objects. 
These methods exploit the additional information obtained from measuring the bistatic 
scattering, significantly enhancing the visualization and detection of buried objects in tests 
conducted in the desert Southwest compared to a monostatic system. Measurements of the 
ratio of image spot amplitude to background for typical buried objects imply useful information 
is collected by over half of the receivers for each transmitter. To the authors' knowledge, this 
system is the first real-time multistatic GPR imaging system capable of field operation. 

The overall conclusion is that multistatic GPR arrays are now a practical reality and show 
good object detection performance in field tests. However, we are only beginning to exploit the 
information potential of multistatic GPR data. The multiple bistatic measurements would be 
particularly useful in classifying buried objects, enabling better estimates of their scattering 
properties. The multistatic data also enables time-reversal techniques to be used to enhance 
object visibility and detection. We expect to see dramatic improvements in detection and 
classification performance as more sophisticated algorithms specifically designed for multistatic 
GPR data are developed and incorporated into our real-time processing system. 
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